
Abstract. The accuracy of the hyperfine integrals
obtained in relativistic NMR computations based on the
zeroth–order regular approximation (ZORA) is investi-
gated. The matrix elements of the Fermi contact oper-
ator and its relativistic analogs for s orbitals obtained
from numerical nonrelativistic, ZORA, and four–com-
ponent Hartree–Fock–Slater calculations on atoms are
compared. It is found that the ZORA yields very accu-
rate hyperfine integrals for the valence shells of heavy
atoms, but performs rather poorly for the innermost
core shells. Because the important observables of the
NMR experiment—chemical shifts and spin–spin cou-
pling constants—can be understood as ‘‘valence prop-
erties’’ it is concluded that ZORA computations
represent a reliable tool for the investigations of these
properties. On the other hand, absolute shieldings cal-
culated with the ZORA might be substantially in error.
Because applications to molecules have so far exclusively
been based on basis set expansions of the molecular
orbitals, ZORA hyperfine integrals obtained from
atomic Slater-type basis set computations for mercury
are compared with the accurate numerical values. It is
demonstrated that the core part of the basis set requires
functions with Slater exponents only up to 104 in the
case where errors in the hyperfine integrals of a few
percent are acceptable.

Keywords: NMR calculations – relativistic quantum
chemistry – atomic hyperfine integrals

1 Introduction

The zeroth–order regular approximation (ZORA) has
been introduced as a well investigated and computa-
tionally effective approximation to the (not explicitly
known) exact two-component relativistic Hamiltonian

[1–4]. The ZORA approach is by now the most
frequently applied methodology in order to carry out
relativistic computations of heavy-nucleus NMR chem-
ical shifts and spin–spin coupling constants in molecules
[5, 6], however, the results obtained with the ZORA
represent approximations to the fully relativistic values.
So far, it has remained an open question how large the
errors in the NMR hyperfine integrals are that are
introduced by the ZORA. The present work was carried
out in order to investigate this problem.

The ZORA Hamiltonian has been studied in detail by
van Lenthe and coworkers [1, 2, 4, 7] as well as by others
[8–11]. For instance, it is known that regarding orbital
energies or radii expectation values the ZORA performs
very well for valence and auto core orbitals of heavy
atoms. Because the chemical properties of heavy atomic
molecules depend almost exclusively on these orbitals,
the ZORA approach has, in connection with Kohn–
Sham density functional theory (DFT), been found to
yield binding energies, molecular geometries, and also
NMR chemical shifts and spin–spin coupling constants
that compare well with experimental data. Generally, the
ZORA is a good approximation for states with large
magnitudes of the potential localized in a rather small
region of space, and comparatively small energies. This
is exactly the case for valence orbitals of heavy atoms,
but not for their core orbitals. Consequently, errors in
core orbital energies, radii expectation values, etc., have
been found to be substantial in heavy atoms (but of little
or no consequence for their chemical properties).

However, NMR nuclear shielding and in particular
spin–spin coupling constants are properties that are
strongly influenced by the electronic structure in the
vicinity of the nuclei under consideration [6]. Typically,
in relativistic computations the hyperfine integrals de-
pend on the electronic structure in the spatial K shell of
the heavy atom, up to a radius of the order of magnitude
1=Z [12]. In the ZORA case, in calculations for PbH4

with point nuclei it was previously shown that a sub-
stantial portion of the relativistic contributions to the
Pb–H spin–spin coupling constant is in fact obtained
from distances of about 10�4 Å around the Pb center
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[13], which is of the same order of magnitude as the
radius of the Pb nucleus. Because of this, and the fact
that this very spatial region exerts the strongest influence
on relativistic effects and the various relativistic
approximations, it is important to assess the principal
quality of the ZORA approach for the computation of
NMR properties, as well as the influence of a basis set
expansion of the orbitals. So far it has been somewhat
unclear whether the success of the ZORA–DFT method
for NMR observables might be due to a fortuitous error
cancellation.

In this work the s orbital matrix elements of the
Fermi–contact (FC) term and its relativistic analogs
(collectively referred to as FC-type integrals) are studied
because they can be expected to be most sensitive with
respect to relativistic effects. It is demonstrated in Sect. 2
that the ZORA yields very accurate hyperfine integrals
for heavy atomic valence orbitals, whereas the relativ-
istic effects of the core shells are not very well repre-
sented. Van Lenthe et al. [14] have previously compared
electron paramagnetic resonance (EPR) A-tensors for
atoms obtained from the ZORA and the four–compo-
nent formalism [14] and also observed very good
agreement. Reference [14] contains some exact rela-
tionships between the ZORA and the Dirac picture for
the respective matrix elements for one–electron (hydro-
gen-like) atoms. The ZORA errors were shown to de-
crease rapidly for states with high principal quantum
numbers and low energy.

From a comparison of accurate numerical results for
Hg with basis set computations it will further be shown
in this work that it is possible to obtain hyperfine inte-
grals correctly within a few percent of error or better from
basis set computations including Slater exponents up to
about 104. All the results were obtained from Hartree–
Fock–Slater calculations (Xa, with a ¼ 0:7). Calculations
which employ more modern density functionals can be
expected to yield similar accuracy for the hyperfine inte-
grals for heavy atoms, in comparison with four–compo-
nent results obtained with the same density functional.

2 Hyperfine integrals in the different formalisms

In the following, dimensionless Hartree atomic units
with me ¼ 1; e ¼ 1; 4pe0 ¼ 1; h ¼ 2p and c ¼
137:0359895 are employed. Equations were converted
to atomic units from SI units.

2.1. Relativistic atomic s orbitals

Throughout this work the discussion will be restricted to
s orbitals because they generally yield the largest
(nonrelativistically the only) contributions to the FC-
type matrix elements. They are characterized by the
quantum numbers n, k, and mj, with k ¼ �1; l ¼ 0;
j ¼ lþ 1=2 ¼ jkj � 1=2 ¼ 1=2. (In general, k ¼ �1;
�2;�3; . . . for s1=2, p3=2, d5=2, . . . orbitals, and
þ1;þ2;þ3; . . . for p1=2, d3=2, f5=2, . . . orbitals [15].) For
the following discussion, only the quantum numbers k
and mj will be of importance. The external potential

is V extðrÞ ¼ �Z=r (point nucleus of charge Z). In the
four-component Dirac picture, an atomic s orbital
jk; mji ¼ j�1;�1=2i for an electron has the form
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where the subscripts þ and � denote the sign of
mj ¼ �1=2 [16, 17]. The real radial functions for the
upper (gD) and lower (f D) component can, for instance,
be determined numerically to high precision, or can be
obtained from a basis set expansion, from the following
coupled set of radial equations for GD ¼ r � gD and
F D ¼ r � f D:

d

dr
F D � k

r
� F D � V � eD

c

� �

� GD ¼ 0 ; ð2aÞ

d
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r
� GD þ V � eD

c
� 2c

� �

� F D ¼ 0 : ð2bÞ

Here, eD ¼ ED � c2, with ED being the Dirac orbital
energy including the rest-mass energy of mec2. For a
many-electron system, the potential V is assumed to
include an effective potential for the electronic interac-
tion, in addition to V ext. The normalization is chosen in
the usual way such that

Z

1

0

dr � r2ðg2 þ f 2Þ ¼ 1 : ð3Þ

For one–electron atoms, the two-component ZORA
orbitals were shown [2] to be the upper components of
the Dirac orbitals with a scaled coordinate r0 ¼ r=k,
k ¼ ð2c2 þ eDÞ=2c2. Likewise, it could be shown that for
a one–electron system with two nuclei the ZORA
eigenfunction corresponds to the scaled upper Dirac
component solved for a different, scaled, internuclear
distance. The A-tensor work by van Lenthe et al. [14]
was already mentioned in the Introduction. The ZORA
EPR hyperfine matrix elements of hydrogen-like systems
were shown to be a factor of k�3 too large. For a more
general self-consistent potential in a many–electron atom
or molecule no such simple relations hold. It should be
noted that for valence orbitals, k is very close to unity.

2.2. Relativistic and nonrelativistic hyperfine operators

In the nonrelativistic NMR theory [18–23] one obtains
the FC (and also the spin–dipole, SD) one–electron
operator(s) as the derivative of the nonrelativistic many-
electron Hamiltonian with respect to the u component
(u 2 fx; y; zg) of a nuclear spin–magnetic moment lA of
a nucleus A, i.e.
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oĤ
nrel

olA;u

�

�

�

�

�

lA;u¼0

¼
X

i

ĥ
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Here, ru is the Pauli spin matrix for direction u. The
four–component (Dirac) analog of ĥ

nrel�FC
is [24–27]

ĥ
D

u ¼ �
1

c
a� rA

r3A

� �

u

; ð6Þ

with a being the 3–vector of the 4� 4 Dirac matrices. It
also contains implicitly the contributions due to the
paramagnetic orbital term of the nonrelativistic theory,
as well as the SD term. For atomic s-shells, however,
only the FC part yields a nonvanishing contribution.
The ZORA analog of the sum of the FC– and the
SD–type operators is [13, 28, 29, 30]
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In Eq. (8), K ¼ 2c2=½2c2 � V ðrÞ�. The FC–only contri-
bution in Eq. (8) is [13]

ĥZu ¼
1

3c2
ru$ K

rA
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: ð9Þ

2.3. Matrix elements of the hyperfine operators

For simplicity the z–direction is chosen for u in Eqs. (5),
(6), and (7). Let the radial part of a normalized
nonrelativistic spin–up (þ) or spin–down (�) s orbital
unrel� ðrÞ be gnrelðrÞ, with

R1
0 dr � r2gnrelðrÞ2 ¼ 1. The

radial part of a corresponding two–component ZORA s
orbital uZ

�ðrÞ will be denoted with gZðrÞ.
In the nonrelativistic case, the well–known expectation

value of ĥ
nrel�FC
z for s orbitals is simply

hunrel� jĥnrelz junrel� i ¼ � 1

3c2
gnrelð0Þ2 : ð10Þ

The factor of 4p in Eq. (5) is canceled by the normal-
ization factor of uðrÞ from the integration over the
angles h and /. By applying partial integration to
Eq. (10) after using the identity $ðrA=r3AÞ ¼ 4pdðrAÞ, it
can be recast into the form

hunrel� jĥnrelz junrel� i ¼ � 2

3c2
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with the nonrelativistic hyperfine integral
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Of course, no different results are obtained with Eq. (11)
than with Eq. (10).

In the four–component case, one obtains instead
from Eq. (1) with Eq. (6)
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with the four–component hyperfine integral
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Analytical expressions for Eq. (14) for hydrogen-like
atoms were given in Ref. [12]. Equation (13) is consistent
with the general expression previously derived by Lipas
et al. [31], which reads in the notation chosen in this
work
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for lþ l0 even, and is zero otherwise. For j ¼ j0 ¼ 1=2
and mj ¼ m0j ¼ 1=2, the 3j symbols have the values
�1=

ffiffiffi

3
p

and 1=
ffiffiffi

6
p

, respectively. Please note that the
four–component hyperfine integral defined by Pyykkö in
Ref. [25] differs from Eq. (14) by not containing the
factor of c.

For the ZORA FC operator (Eq. 9) one obtains in-
stead for an s orbital [13, 29]
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with the ZORA hyperfine integral
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k K

dgZk0
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� �
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In the last equation, partial integration was applied in
order to avoid derivatives of K. It should be noted that
the contact term itself vanishes for finite values of c in
the last equation [13, 28, 32].

2.4. The nonrelativistic limit

For the ZORA FC operator, (Eq. 9), the nonrelativistic
limit is simply obtained by letting K! 1, in which case
the differentiation of the remaining rA=r3A term yields
4pdðrAÞ and thus the operator Eq. (5). At the same time,
gZ ! gnrel. Another way of obtaining the nonrelativis-
tic limit for the matrix elements of the ZORA FC
operator is to set K ¼ 1 in Eq. (17) which then yields
�ð1=2Þgnrelð0Þ2 upon integration. It can also be seen
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that anrel�1;�1 and aZ
�1;�1 only differ by the factor of K in

the integrand.
For the four–component case, the nonrelativistic

limit must be obtained from the nonrelativistic limit for
the coupled pair of radial equations for g and f (Eqs. 2a,
2b). For c!1, the ðV � eDÞ=c term in Eq. (2b) can be
neglected and thus

F nrel ¼ 1

2c
dGnrel

dr
þ k

r
� Gnrel

 !

: ð18Þ

For s orbitals, k ¼ �1, one obtains

fnrel ¼ 1

2c
dgnrel

dr
: ð19Þ

Substituting the last expression in the hyperfine integral,
Eq. (14) yields exactly Eq. (12), i.e. �ð1=2Þgnrelð0Þ2;
thus the nonrelativistic limit Eq. (10) is properly
obtained from Eq. (13). See also Ref. [25].

2.5. Numerical and basis set results

The computation of the hyperfine integrals was for this
work implemented into the numerical Dirac–Hartree–
Fock–Slater code DIRAC that accompanies the Amster-
dam density functional (ADF) program package [33].
Van Lenthe [2] previously implemented atomic ZORA
calculations in this code. The nonrelativistic limit was
obtained by scaling the speed of light by a factor of 104

in the numerical calculations. The Xa parameter was set
to 0.7.

Additionally, nonrelativistic and ZORA basis set Xa
calculations for the mercury atom were carried out
with the ADF program. The hyperfine integrals were
then computed with the ZORA code for spin–spin
coupling constants previously developed by Autsch-
bach and Ziegler [13, 29]. The numerical integration
parameter in ADF was set to 10 (12 for the inner core
region) in order to minimize errors due to the numer-
ical integration.

The results obtained with the numerical DIRAC code
for the series Zn, Cd, Hg, Eka–Hg, and the rare-gas
atoms are collected in Table. 1. Presented are c2 times
the results of Eqs. (11), (13), and (16), respectively. It can
be seen that for the valence shells of the heaviest atoms
the ZORA approach yields very accurate results for the
hyperfine integrals. At the same time, huge relativistic
effects can be found, for instance a relativistic increase of
the Hg 6s hyperfine integral of about a factor of 3. Such
drastic effects are already known from relativistic scaling
factors for hyperfine integrals tabulated by Pyykkö et al.
[12].

For the innermost core shells, substantial errors are
obtained, which suggests that a ZORA calculation
might not yield very accurate results for properties
that depend on the core orbitals themselves. For in-
stance, when evaluating absolute shielding constants
for heavy atomic systems the ZORA approach will
contain errors from the contributions due to the core
orbitals. However, these errors can be expected to

cancel almost entirely when the chemical shifts are
determined. This explains why reasonable to good
agreement with experimental chemical shifts has so far
been obtained with the ZORA-DFT approach [28,
34–43].

Regarding spin–spin coupling constants, which are
most sensitive to the accuracy of the FC–type matrix
elements, also the valence orbitals almost exclusively
determine the coupling to another atom. The reason
is that in order to yield a sizeable contribution to the
coupling constant, an orbital must have compara-
tively large values at both nuclei. This picture holds
for an orbital–based formalism in which each valence
orbital must be orthogonal to the other atom’s cores.
The orthogonalization tails of a heavy atom’s core
orbitals on another atom’s core are usually too small
to be of any substantial influence on the coupling
constant. This also explains why spin–spin coupling
constants obtained from the ZORA–DFT approach
have been found to be in good to very good agree-
ment with experimental data for a variety of heavy
atomic systems [5, 13, 29, 30, 41, 44–48] — even
though there is no systematic cancellation of errors
between a probe and a reference as is the case for
chemical shifts.

Molecular ZORA NMR computations were so far
exclusively carried out with basis set expansions of the
molecular orbitals. The 1s and 6s hyperfine integrals
for the Hg atom that were calculated for the present
work using various Slater–type basis sets are listed in
Table 2. It is obvious from the results in Table 2 that
the use of an incomplete basis introduces nonnegligi-
ble errors to the hyperfine integrals. The relativistic
basis sets do not reproduce well the nonrelativistic
hyperfine integrals, and vice versa. Regarding the
relativistic corrections, in particular the region very
close to the Hg nuclear radius (around 10�4 a.u.) was
previously shown in Ref. [13] to yield substantial
contributions to the FC–type matrix elements. The
orbital density has to be properly modeled in this
spatial region, which requires the use of 1s basis
functions with exponents that are much higher than
what is required to yield accurate ZORA energies and
orbital energies. This is visible from the data in Ta-
ble 2. However, it should be kept in mind that the
present study has focused on point like nuclei,
whereas a very accurate computational result must
take finite–nucleus effects into consideration. Thus it
seems that the less than 3% error in the Hg 6s
hyperfine integral which is obtained by limiting the
largest 1s exponent to 5� 103 is acceptable when such
effects are neglected. In fact, it can be expected that
the truncation of the basis set near the nucleus com-
pensates to some extent for the error that is made by
not adopting a realistic finite-nucleus model [13]. In
summary, the errors due to a limited basis size are
comparable or smaller in magnitude than finite–nu-
cleus effects, the influence of temperature and molec-
ular vibrations, and other approximations in the
computational model. The ZORA itself, on the other
hand, does not seem to cause much error for valence-
shell hyperfine integrals.
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3. Concluding remarks

The good performance of the ZORA to obtain
relativistic hyperfine integrals for valence shells in
heavy many–electron atoms was perhaps not to be
expected a priori. The reason for this is that the core
tails of the valence orbitals should somewhat depend

on the shape of the innermost core orbitals because
of the orthogonality requirement. Since the latter
afford large relativistic errors due to the ZORA, the
former might also suffer from these errors. As it turns
out from the present numerical analysis this is
hardly the case for the types of integrals that were
investigated.

Table 1. Numerically calcu-
lated hyperfine integrals (�2/3
times Eqs. (12), (14), and (17))
for the s orbitals jn;�1; 1=2i of
the atoms Zn, Cd, Hg, Eka–Hg
(Uub), and the rare gas atoms
He–Rn, in atomic units. All
calculations based on Hartree–
Fock–Slater calculations (Xa,
with a = 0.7). The factor of c�2

in Eqs.(11), (13), and (16) has
not been included. Non-
relativistic results were obtained
from four–component calcula-
tions with a large speed of light
(Dirac– and Zeroth order reg-
ular approximation (ZORA) –
calculations yielded the same
nonrelativistic results within the
displayed number of digits)

a Percentage deviation of ratio
of ZORA and Dirac value
from 1

Atom/shell nrel. Dirac ZORA Error/%a

Zn
1s 0.3474974 · 105 0.3740329 · 105 0.3857595 · 105 3.1352
2s 0.3284919 · 104 0.3646748 · 104 0.3664363 · 104 0.4830
3s 0.4859469 · 103 0.5442031 · 103 0.5446763 · 103 0.0870
4s 0.2684037 · 102 0.3043327 · 102 0.3042713 · 102 )0.0202

Cd
1s 0.1440583 · 106 0.1758837 · 106 0.1914724 · 106 8.8631
2s 0.1491092 · 105 0.1976127 · 105 0.2006116 · 105 1.5176
3s 0.2810212 · 104 0.3754415 · 104 0.3768236 · 104 0.3681
4s 0.5462829 · 103 0.7357665 · 103 0.7362748 · 103 0.0691
5s 0.3868055 · 102 0.5435522 · 102 0.5433639 · 102 )0.0346

Hg
1s 0.6727451 · 106 0.1324240 · 107 0.1735135 · 107 31.029
2s 0.7452473 · 105 0.1887951 · 106 0.1989677 · 106 5.3882
3s 0.1671006 · 105 0.4297198 · 105 0.4362344 · 105 1.5160
4s 0.4173350 · 104 0.1100035 · 105 0.1104751 · 105 0.4287
5s 0.8392472 · 103 0.2266142 · 104 0.2267078 · 104 0.0413
6s 0.6551365 · 102 0.2020647 · 103 0.2018691 · 103 )0.0968

Eka)Hg
1s 0.1853252 · 107 0.2094892 · 108 0.4080311 · 108 94.774
2s 0.2117183 · 106 0.4434898 · 107 0.5075296 · 107 14.440
3s 0.5079108 · 105 0.1094293 · 107 0.1139439 · 107 4.1256
4s 0.1478285 · 105 0.3198698 · 106 0.3240658 · 106 1.3118
5s 0.4372390 · 104 0.9642374 · 105 0.9671521 · 105 0.3023
6s 0.9670271 · 103 0.2352428 · 105 0.2349986 · 105 )0.1038
7s 0.8137886 · 102 0.2713729 · 104 0.2705483 · 104 )0.3039

He
1s 0.7393698 · 101 0.7395910 · 101 0.7396414 · 101 0.0068

Ne
1s 0.1220830 · 104 0.1230457 · 104 0.1234021 · 104 0.2896
2s 0.6929871 · 102 0.7011968 · 102 0.7013692 · 102 0.0246

Ar
1s 0.7359462 · 104 0.7552022 · 104 0.7630797 · 104 1.0431
2s 0.5860302 · 103 0.6080286 · 103 0.6088560 · 103 0.1361
3s 0.6546627 · 102 0.6800073 · 102 0.6801134 · 102 0.0156

Kr
1s 0.6036323 · 105 0.6722745 · 105 0.7036373 · 105 4.6652
2s 0.5936913 · 104 0.6916659 · 104 0.6968786 · 104 0.7536
3s 0.9625452 · 103 0.1131200 · 104 0.1132957 · 104 0.1553
4s 0.1150442 · 103 0.1354177 · 103 0.1354296 · 103 0.0088

Xe
1s 0.2055918 · 106 0.2664610 · 106 0.2974435 · 106 11.627
2s 0.2165651 · 105 0.3118513 · 105 0.3181664 · 105 2.0250
3s 0.4292881 · 104 0.6231963 · 104 0.6264353 · 104 0.5197
4s 0.9389574 · 103 0.1370429 · 104 0.1372066 · 104 0.1195
5s 0.1329676 · 103 0.1965856 · 103 0.1965736 · 103 )0.0061

Rn
1s 0.8365342 · 106 0.1921799 · 107 0.2653621 · 107 38.080
2s 0.9334817 · 105 0.2895494 · 106 0.3084836 · 106 6.5392
3s 0.2127532 · 105 0.6712433 · 105 0.6837643 · 105 1.8653
4s 0.5503302 · 104 0.1774418 · 105 0.1784173 · 105 0.5498
5s 0.1273283 · 104 0.4142075 · 104 0.4145479 · 104 0.0822
6s 0.1928948 · 103 0.6547230 · 103 0.6543090 · 103 )0.0632
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Taking the present–day accuracy of ZORA–DFT
computations on heavy atomic systems into consider-
ation, i.e. the prevalent errors due to the approximate
treatment of the electron correlation as well as simplified
computational models of the real systems, the ZORA
does not appear to be a source of large errors for com-
putations of chemical shifts and spin–spin coupling
constants. Errors might arise for properties that depend
on the core orbitals, such as absolute shieldings. Because
of the strong relativistic increase of the hyperfine matrix
elements, some care has to be taken that a molecular
basis set has enough functions with high exponents at
the heavy nuclei in order to give a good description of
the valence orbital’s core tails.
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Table 2. Comparison of numerical ZORA hyperfine integrals of
the 1s and 6s orbitals of Hg with approximate ones from Slater–
type basis set atomic calculations and numerical integration [49].
The factor of c�2 is not included, as in Table 1

Basis/shell nrel ZORA

nrel.TZPa

1s 672825.1 964021.6
6s 66.83272 114.6450

ZORA TZPb

1s 672361.8 1359656.
6s 76.41098 163.0920

ZORA TZP + steep 1s+2pc

1s 671277.2 1650413.
6s 70.12537 196.5137

Numerical results (Tab.1)
1s 672745.1 1735135
6s 65.51365 201.8691

aNonrelativistic triple–f polarized basis set from the ADF AE basis
set library. Double f for core shells. Highest 1s exponent is 91.85.
bTriple–f polarized basis set from the ADF ZORA/TZP basis set
library for use with ZORA computations. Double f for core shells.
Highest 1s exponent is 781:0
cZORA–TZP basis augmented with even–tempered set of 1s and 2p
functions with exponents up to 5� 103. See Ref. [13]
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